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Abstract

Large scale dislocation dynamics simulations usually involve several millions of in-
teracting dislocation segments. The stress at a point and interaction force between
two segments need to be computed many times during simulations. We evaluate
the cost versus accuracy of using spherical harmonics series to approximate the
anisotropic elastic Green’s function in calculating stresses and forces between seg-
ments. The stress at a point is obtained by analytically integrating the spherical
harmonics series once and the forces by integrating it analytically twice. We analyze
the convergence and cost of using this approach and describe the elements of a fast
implementation. We find that the cost of the force and stress calculations grows
quadratically with the accuracy for a fixed anisotropy ratio.

Key words: Dislocations, anisotropic elasticity, dislocations interactions, spherical
harmonics.

1 Introduction

Dislocation dynamics simulations often assume isotropic elasticity to compute
stresses at points in the simulation volume and forces between dislocations.
Anisotropic elasticity has been used to compute dislocation reactions and dy-
namics for a small dislocation ensembles like a dislocation loop, a Frank-Read
source and two straight, interacting dislocations [1, 2, 3, 4, 5, 6]. For large,
dense dislocation ensembles, anisotropic elasticity is rarely used due to its per-
ceived computational cost. Most large scale simulations have resorted to using
isotropic elastic approximations that are less computationally intensive.

It is difficult to bound the approximation that is made when using isotropic
elasticity instead of anisotropic elasticity. Qualitative differences have been
observed between isotropic and anisotropic media in the literature. For high
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anisotropy, such as for α-iron at high temperature, it has been shown ana-
lytically [1], numerically [2] and experimentally [3] that prismatic and glide
loops form sharp corners. These corners can only be captured when using
the anisotropic elasticity formalism. It was also observed [4] that the critical
stress to bow out a Frank-Read source is different when anisotropic elasticity
is used compared to isotropic elasticity for the same material. This suggests
that dislocation mechanisms can be significantly different when full anisotropy
is considered. For a quantification of the error made using isotropic elasticity,
M. Rhee et al. [5] have computed an error as high as 15% for Molybdenum
which is moderately anisotropic (A = 0.775) for some components of the stress
tensor in a hexagonal dislocation loop. Also, Han et al. [7] have concluded that
the stress-strain behavior of copper (A = 3.21) cannot be reproduced using
isotropic approximations.

The main reason anisotropic elasticity is not used in large scale dislocation
dynamics simulations is its perceived cost. It has been shown that using the
Willis-Steeds or the Brown formula [8] to compute interactions between dis-
locations in anisotropic elasticity can be orders of magnitude slower than the
equivalent calculation in isotropic elasticity. The exact cost depends on the
way forces between interacting dislocation segments are computed as well as
the distance separating the segments [5, 7, 9]. The main difficulty in using
anisotropic elasticity is that an analytical form of the anisotropic Green’s func-
tion does not exist. The analytical form of the Green’s function in isotropic
elasticity has led to analytical expressions for the stress at a point and the
force between two interacting segments [10]. Use of analytical forms enables
a fast calculation of stresses and forces compared with numerical integration.
Since an analytical definition of the Green’s function is lacking in anisotropic
elasticity, several attempts have be made to describe it efficiently. For in-
stance, Rhee et al. [5] defined look-up tables to determine the angular part
of the Green’s function and its derivative. Unfortunately, these methods re-
main expensive and have seen a limited use in dislocation dynamics. They
still require numerical integration of forces, and the accuracy and cost vary
with relative distance between segments: the closer the interacting dislocation
segments are, the more Gauss quadrature points are necessary to compute the
forces between interacting pairs of segments accurately.

In this paper, we propose a fast implementation of dislocation interactions
in anisotropic media that is practical for large scale simulations. The method
is illustrated for the classical Volterra dislocation, using the singular theory
recounted in Hirth and Lothe [8]. The key is to represent the Green’s function
with a spherical harmonics series. Mura et al. proposed this representation
in 1971 [11]. The novelty is to observe that such a decomposition allows the
single line integral involved in the definition of the stress at a point and the
double line integral involved in the calculation of the forces to be expressed
analytically once the coefficients of the series have been set. This alleviates
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Fig. 1. Notations for two interacting segments: Dislocation segment [x1, x2] with
line direction t′, length L′ and Burgers vector b′ and segment [x3, x4] with line
direction t, Burgers vector b and length L. If x is a point on [x3, x4] and x′ a point
on segment [x1, x2], then R = x − x′.

the need for numerical integration and drastically decreases the cost of stress
and force evaluations.

Section 2 describes the expansion of the derivative of the Green’s function
into a spherical harmonics series and the integration procedure of that series
leading to series expressions for the stress at a point due to a dislocation
segment and the force between interacting segments. Section 3 shows how the
integration of the spherical harmonics series can be computed in an efficient
manner. Section 4 shows the numerical results for cost and accuracy of the
proposed method. The last section compares our method to existing methods.

2 Stress and interactions forces in anisotropic elasticity

In dislocation dynamics simulations, dislocations are discretized into nodes
connected by segments. The stress at a point due to a dislocation segment
and the interaction force between a pair of segments can be defined using
linear elasticity.

In a linear elastic domain, the stress at x due to a dislocation loop C with
elastic stiffness tensor Cijkl is given by Mura et al. ’s formula [8]

σjs(x) = ǫngrCjsvgCpqwnb
′
w

∮

C

∂Gvp

∂xq
(x − x′)dx

′

r (1)

where ∂Gvp

∂xq
is the first derivative of the Green’s function, defined in more detail

below, b′ is the Burgers vector of the dislocation loop and ǫ is the permutation
tensor. The stress is determined uniquely when the integral is evaluated on a
closed loop. This loop can be decomposed over a sum of straight segments to
form a discretized polygonal loop.

In the dislocation dynamics code ParaDiS [10], forces are defined at the end
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nodes of dislocation segments. There are a couple of equivalent ways to com-
pute the force on a node of a discretized dislocation configuration. The force
can be found as the minus derivative of the total energy with respect to the
node position. Alternatively, the force on a node can be obtained using the vir-
tual force argument i.e. by computing appropriate line integrals of the Peach-
Koehler force over the segments connected to the node. Consider two segments
[x1, x2] and [x3, x4] with Burgers vectors b′ and b and lengths L′ and L re-
spectively, see Fig. 1 for notations. The contribution from segment [x1, x2] to
the force on node x4 is equal to the work of the Peach-Koehler force as the
segment sweeps over a triangular shaped area due to a virtual displacement
of node x4 [10] i.e.

F 4 =

x4
∫

x3

N(x)σ12(x) · b × dx

where N is the shape function N(x) = |x −x3|
|x4−x3|

where x is a point on segment

[x3, x4] and is defined such that it equals one when x = x4 and zero when
x = x3.

When we evaluate the stress on a finite segment [x1, x2], the force becomes a
double line integral over the two dislocation segments,

F 4
i = ǫijoǫngrCjsvgCpdwnbsb

′
w

x2
∫

x1

x4
∫

x3

∂Gvp

∂xd

(R)
|x − x3|

L
dxodx

′

r (2)

where R = x−x′ is the distance between two points x and x′ belonging the
two dislocation segments [x3, x4] and [x1, x2] respectively.

This latter definition of the force at a node Eq. (2) is convenient for force
calculations as it explicitly gives the interaction force on the end nodes of the
dislocation segments. Arsenlis et al. [10] showed that in isotropic elasticity,
the force defined in Eq. (2) can be computed analytically thereby preventing
expensive numerical integration.

2.1 Definition of the Green’s function and its derivative

The stress and the interacting force between dislocations are defined through
the Green’s function. The Green’s function Gkp(x − x′) is defined as the dis-
placement in xk-direction at point x in response to a unit point force in xp-
direction applied at point x′. It is given explicitly in isotropic elasticity but
not in anisotropic elasticity. The Green’s function in anisotropic elasticity has

4



êx
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Fig. 2. Notations for the definition of the Green’s function in anisotropic elasticity.
The vector T is the unit vector T = R

R , (e1, e2, e3) is the basis where the elastic
tensor Cijkl is defined, (ê1, ê2) are two arbitrary unit vectors orthogonal to T and
ξ is the projection of T onto (ê1, ê2) and makes an angle ψ with êx. By definition,
T · ξ = 0.

been described in detail by Bacon, Barnett and Scattergood [12] as

Gkp =
1

4π2R

π
∫

0

M−1
kp (ξ)dψ (3)

where M−1(ξ) is defined as

M−1
kp (ξ) =

ǫksmǫprw(ξξ)sr(ξξ)mw

2ǫlgn(ξξ)1l(ξξ)2g(ξξ)3n

where the notation (ξξ)ij = ξkCkijlξl is used. The matrix M−1 is a quotient
of polynomials of order 4 in the numerator and 6 in the denominator. R is the
norm of R and T = R

R
its direction. The vector ξ(ψ) is a unit vector for which

ξ · T = 0 and varies in the plane formed by (êx, êy) with an angle ψ. Vectors
êx and êy are two arbitrary unit vectors defined in the plane orthogonal to
T , see Fig. (2) for notations. More details can be found in [12, 13]. A closed
form analytical expression for the Green’s function’s integral does not exist.

The derivative of the Green’s function is given in Barnett [13] as

∂Gkp

∂xq

=
1

4π2R2

π
∫

0

(

−TqM
−1
kp + ξqNkp

)

dψ

where

Nkp = CjrnwM
−1
kj M

−1
np (ξrTw + ξwTr)

As defined the derivative of the Green’s function is a product of a part de-
pending only on 1

R2 and an angular part g depending only on the direction
T

gvpd(T ) = gvpd(θ, φ) =

π
∫

0

(

−TdM
−1
vp + ξdNvp

)

dψ (4)
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where (θ, φ) are the spherical coordinates of T , so that the derivative of the
Green’s function is

∂Gvp

∂xd
(R) =

gvpd(T )

4π2R2

There exists no analytical expression for gvpd, however the function gvpd(T ) is
suitable for decomposition in spherical harmonics.

2.2 Decomposition in spherical harmonics

A continuous function g on the unit sphere can be expanded in a series of
spherical harmonics

g(T ) =
∞
∑

l=0

l
∑

m=−l

glmY m
l (T ) (5)

which uniformly converges on the unit sphere [11].

The expansion coefficients glm are independent of T (θ, φ) and are defined as

glm =

2π
∫

0

π
∫

0

g(θ, φ)Y m∗
l (θ, φ) sin θdθdφ. (6)

The spherical harmonics Y m
l are defined as the complex functions

Y m
l (θ, φ) = Mm

l P
m
l (cos θ)eimφ

where Mm
l =

√

(2l+1)
4π

(l−m)!
(l+m)!

and Pm
l are the associated Legendre polynomi-

als [14]. For any m ∈ [−l, l], the spherical harmonics can be written explicitly
as

Y m
l (θ, φ) = (−1)mM

|m|
l fm(φ)(sin θ)|m|

[(l−|m|)/2]
∑

k=0

(2l − 2k)!

2l(l − k)!k!(l − 2k − |m|)!
(−1)k(cos θ)l−|m|−2k

where we have posed

fm(φ) =











eimφ if m ≥ 0

e−ipφ =
[

eipφ
]∗

if m < 0, m = −p

The spherical harmonics can be written in Cartesian coordinates in the basis
(e1, e2, e3) where the coefficients Cijkl are defined as a function of x = T ·e1,
y = T · e2 and z = T · e3 as

Y m
l (T ) = (−1)mM

|m|
l fm(x, y)

[(l−|m|)/2]
∑

k=0

(2l − 2k)!

2l(l − k)!k!(l − 2k − |m|)!
(−1)kzl−|m|−2k

(7)
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with

fm(x, y) =











(x+ iy)m if m ≥ 0

(x− iy)−m =
[

(x+ iy)|m|
]∗

if m < 0

All the factorials in Eq. (7) can be expressed using the binomial coefficients
and rewritten in the form

Y m
l (T (x, y, z)) = fm(x, y)

[(l−|m|)/2]
∑

k=0

Q̄
|m|
l (k)zl−|m|−2k (8)

where

Q̄m
l (k) =

(−1)m+k

4π2

m!

2l

√

√

√

√

(2l + 1)

4π

(l −m)!

(l +m)!







l

k













2l − 2k

l













l − 2k

m





 (9)

The function g can be defined in terms of Eq. (8) and Eq. (9)

g(x, y, z) =
∞
∑

l=0

l
∑

m=0

2ℜ
(

(x+ iy)mglm
)

[(l−m)/2]
∑

k=0

Qm
l (k)zl−m−2k (10)

where we have noted ℜ(x) the real part of x and Q0
l (k) = Q̄0

l (k) when m = 0
and Qm

l (k) = 2Q̄m
l (k), when m > 0.

Applying the spherical harmonics series expansion to the angular part of the

derivative on the Green’s function and defining x + iy = R·(e1+ie2)
R

def
= R

R
· e12

and z = R

R
· e3

∂Gvp

∂xd
(R) =

∞
∑

l=0

l
∑

m=0

[(l−m)/2]
∑

k=0

ℜ

(

Qm
l (k)glm

vpd

(R · e12)
m(R · e3)

l−m−2k

Rl−2k+2

)

This definition involves a quotient of terms that are a function of R which
depends only on two variables m and l − 2k and can be simplified further

∂Gvp

∂xd
(R) =

∞
∑

q=0

2q+1
∑

m=0

ℜ

(

Sqm
vpd

(R · e12)
m(R · e3)

2q+1−m

R2q+3

)

(11)

where Sqm
vpd is a sum of products composed of Qm

l (k) and glm
vpd.

The Green’s function and its derivative depend only on odd powers of 1/R.
This property means that in the expansion in spherical harmonics, the non-
zero terms correspond to odd powers of 1/R. For isotropic elasticity, the expan-
sion in spherical harmonics is exact and only requires a truncated expansion
up to q = 1.
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2.3 Stress and forces in anisotropic elasticity in terms of spherical harmonics

Since the stress at a point, Eq. (1) and the force on an end node, Eq. (2) can
be written as a function of the derivative of the Green’ function, they can also
be expanded in series using Eq. (11).

σjs(x) = ǫngrCjsvgCpdwnb
′
w

∞
∑

q=0

2q+1
∑

m=0

ℜ



Sqm
vpd

x2
∫

x1

(R · e12)
m(R · e3)

2q+1−m

R2q+3
dx′r





(12)
and

F 4
i = ǫijoǫngrCjsvgCpdwnbsb

′
w

∞
∑

q=0

2q+1
∑

m=0

ℜ



Sqm
vpd

x2
∫

x1

x4
∫

x3

(R · e12)
m(R · e3)

2q+1−m

R2q+3

|x − x3|

L
dxodx

′
r



 (13)

These equations for the stress and the force reveal single and double integrals
over the dislocation segments. The advantage of writing the stress and the
force using expansion in spherical harmonics series is the possibility to derive
efficiently via recurrence these integrals analytically. The calculations of the
single line integral

Jijp(R) =
∫

(R · e3)
i(R · e12)

j

Rp
ds (14)

and the double line integral

Hijp(R) =
∫ ∫

(R · e3)
i(R · e12)

j

Rp
drds (15)

using recurrence relations are given in the Appendix. Following the definition
of the stress and the force, the powers i, j and p are linked by the relation
i + j = p− 2 which limits the number of integrals to compute. Furthermore,
p is odd and p ≥ 3.

Section A.1 of the appendix gives the recurrence relations for the force in
the case of two non-parallel, non-intersecting segments. Section A.2 of the ap-
pendix gives the recurrence relations in the case of two parallel, non-intersecting
segments. Section A.3 gives the recurrence relations in the case of two collinear,
non intersecting segments. Section A.4 gives the recurrence relations for the
stress at a point whether the point is collinear to the segment or not.
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3 Implementation of anisotropic elastic stress and force

Several elements in the force and stress formula can be pre-computed inde-
pendently of the dislocation segments for faster calculation.

The product Sqm
vpd is a function of expansion coefficients glm

vpd. It does not depend
on the exact geometry of the interacting pair of segments and can be pre-
computed once at the beginning of the simulation.

The 3× 3× 3× 3 stiffness tensor Cijlk is often written in a contracted matrix
notation Cαβ, a 6 × 6 matrix, to take advantage of symmetry in the strain
definition. For instance, a 3 × 3 tensor A can be written as a 6 dimensional
vector A



































































A1 = A11

A2 = A22

A3 = A33

A4 = A12 + A21

A5 = A23 + A23

A6 = A13 + A31

(16)

and we can define an operator o such that Aα = oij
α [Aij] by the transformation

defined in Eqs 16 where α varies in {1, 6} and (i, j) in {1, 3}.

Using symmetries, the series expansion of the stress Eq. (12) can be simplified.
The 3 × 3 × 3 matrix

Ivpd =
∞
∑

q=0

2q+1
∑

m=0

ℜ





S
qm
vpd

L′

∫

0

(R · e12)
m(R · e3)

2q+1−m

R2q+3
dξ′r







can be contracted into a 3 × 6 matrix, Ivα = opd
α [Ivpd]. In the definition of the

integral, the change of variable x′ = (1 − ξ′

L′
)x1 + ξ′

L′
x2 has been made.

The 3 × 3 × 3 matrix B’ defined as

B
′

pdg =
∑

w,n,r

Cpdwnǫngrb
′

wt
′

r

can also be contracted as a 6 × 3 matrix noted B
′

αg = opd
α [B′

pdg]. Using the
definitions of I and B’, the stress becomes

σjs(x) = CjsvgB
′

pdgIvpd

and the contracted form of the stress at a point σγ(x) from Eq. (12) can be
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written

σγ(x) = Cγβ o
vg
β [IB′]

Similarly, the expression Eq. (13) for the force can also be simplified. The
3 × 3 × 3 matrix

Ovpd =
∞
∑

q=0

2q+1
∑

m=0

ℜ

(

Sqm
vpd

∫ L

0

∫ L′

0

(R · e12)
m(R · e3)

2q+1−m

R2q+3

ξ

L
dξdξ′

)

can be contracted into a 3 × 6 matrix, Ovα = opd
α [Ovpd]. In the definition

of the integrals, the changes of variable x = (1 − ξ
L
)x3 + ξ

L
x4 and x′ =

(1 − ξ′

L′
)x1 + ξ′

L′
x2 have been made.

The 3 × 3 × 3 matrix A whose components are

Aivg =
∑

j,s,o

Cjsvgǫijobsto

can also be contracted as 3 × 6 matrix Aiβ = ovg
β [Aivg].

Using the three matrices A, B’ and O, the force becomes

F 4
i = AivgB

′

pdgOvpd

and the contracted form of the force from Eq. (13) can be written

F 4
i = Aiβ o

vg
β [OB

′

]

4 Numerical results

The expansion of the force in spherical harmonics series in Eq. (13) depends
on expansion coefficients glm

vpd, defined in Eq. (6) and on the integrals Hijk,
defined in Eq. (15). The expansion coefficients glm

vpd are defined as a double
integral over angles (θ, φ) of the function g(θ, φ), Eq. (6). For a fixed couple
of angles (θ, φ) or direction T , the function g(T ) is also defined as an integral
over an angle ψ as shown by Eq. (4).

For a given direction T , evaluating the function g involves a numerical integra-
tion over ψ ∈ [0, π]. The number of angles ψ needed to describe this integral
is shown in Fig. (3)[a]. The error in calculating the g at a point on the sphere
varies as a function of the number of angles chosen to discretize the integral.
Approximately 100 angles are sufficient to obtain machine precision accuracy
for a material with an anisotropy less than 8.
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Fig. 3. (a) Convergence of the integral defining the angular part of the derivative
of the Green’s function, Eq. (4). 100 points are sufficient to represent the integral
with machine precision. (b) Convergence of the number of points to discretize the
angles (θ, φ) to represent the angular part of the derivative of the Green’s function
correctly using spherical harmonics series, Eq. (5). 150 × 150 grid describes the
derivative of the Green’s function with an accuracy of 10−13.

The expansion coefficients glm
vpd in Eq. (6) are defined as the double integral

over the angles (θ, φ) of the product of the angular part of derivative of
the Green’s function g and the conjugate of the spherical harmonics Y ∗m

l .
The function g(θ, φ) is evaluated by the method above at discrete grid points
on the unit sphere into a grid where the angles θ ∈ [0, π] and φ ∈ [0, 2π]
are discretized. For each pair of angles, the integral in Eq. (5) is computed
numerically as described in the previous paragraph. The double integral in
Eq. (6) over φ is computed using the trapezoidal rule, and the integral over
θ is computed using Gauss quadrature to obtain the expansion coefficients.
The accuracy of the calculations for the expansion coefficients glm

vpd depends
on the number of grid points chosen for discretizing the function on the unit
sphere. Fig. 3[b] shows how the error between computing g in Eq. (4) and its
expansion in spherical harmonics in Eq. (5) varies as a function of the number
of angles (θ, φ) chosen. For about 150×150 grid points, 13 decimal places can
be achieved.

In application, the spherical harmonics series used to describe the stress (Eq. 12)
or the force (Eq. 13) must be truncated. The truncation number is noted qmax.
The larger the expansion order qmax considered in the series the more accu-
rate and more expensive the calculations of the stress and the force calcula-
tions become. For instance, if the material is isotropic, i.e. has a coefficient of
anisotropy

A =
2C44

C11 − C22

of 1 then truncating the series at qmax = 1 gives the exact solution. For all the
anisotropic ratios, the solution becomes approximate but fully precise.

The error in the force calculation is evaluated by computing how much accu-
racy is gained by adding a new term in the spherical harmonics series. This
error is defined as the average between the relative error on the four norms
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of the force on the four nodes of two interacting orthogonal segments, each of
length L = 100 and separated by a distance of d = 10 in arbitrary units. The
error is computed such that

δFerror(q) =
1

4

4
∑

i=1

|F q
i − F q+1

i |

|F q
i |

The main cost of the interaction force or stress calculations resides in the cal-
culations of the integrals J , H (see Eqs. (14-15)) as everything else can either
be pre-computed independently of the two segments lengths and directions
or computed efficiently using the contracted matrices A and B′ as defined in
section 3. Fig. 4[a] shows the time spent in computing forces as qmax increases.
That cost is computed as the time spent to compute force for a particular qmax

versus the time spent to compute the same forces using isotropic elasticity i.e.
qmax = 1. The polynomial fit of Fig. 4[a] shows that this cost is quadratic in
qmax.

The expansion order qmax needed to compute forces accurately is related to the
anisotropy of the elastic media. As the anisotropy increases, more coefficients
in the spherical harmonics series are needed to reach a given accuracy. Fig. 4[b]
shows how the error in force calculations varies as a function of increasing
anisotropy A and cost. This cost in turn is related to qmax. For A = 1, the
isotropic case, the error in the force calculations is 10−16 for qmax = 1. For
A = 7.4, corresponding to α−Fe at 900oC, an error of 3 × 10−6 is reached for
qmax = 20 and is 56 times more expensive than isotropic elasticity.

Fig. 5[a] shows how the error in force calculations decreases with the expansion
order qmax in the spherical harmonics series for a few values of anisotropy ratio
A. This decrease is linear. The convergence rate can be fitted as a function
of logA. Fig. 5[b] shows a numerical fit of the form − exp[−(α logA + β)γ].
Parameters α, β and γ differ slightly between the right and the left fit of the
data and are given by α = 0.82 and −0.87, β = −0.04 and 0.01 and γ = 2.2
and 1.6 for the left and right fits respectively. In summary, the log of the
error in force calculations varies as − exp[−(α logA+ β)γ]qmax where A is the
anisotropy ratio and qmax the expansion order.

The convergence of the spherical harmonics series also depends on the geom-
etry of the two interacting segments. We consider the same two non-parallel
segments as before but now we vary the distance d between the two segments.
The error made by computing the interaction forces as a function of distance
d/L is shown in Fig. 6 for three different anisotropic coefficients of 1.0, 3.7 and
7.4 going from no, intermediate to large anisotropy. The error in force calcu-
lations does not strongly depend on the distance between the two segments.

The cost and accuracy for the calculation of a stress at a point, Eq. 12 as
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Fig. 4. (a) Cost relative to isotropic calculations of computing interaction forces
between two non-parallel segments of length L = 100 and separated by a distance
d = 10 as the expansion order qmax in the spherical harmonics series increases. A
polynomial fit shows that the cost grows quadratically as a function of qmax. (b)
Error in the force calculation as a function of cost and anisotropy.
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Fig. 5. (a) The error in force calculation decreases linearly with qmax and is shown
for a few values of anisotropy A for clarity. A linear fit is also shown for each curve.
(b) The convergence rate observed in (a) can be fitted by a function of the form
− exp[−(α logA+ β)γ ], see values of α, β and γ in the text.

qmax and A increases have also been analyzed. The same qualitative behavior
exhibited by the interaction force between two segments is observed for the
computation of the stress at a point on one segment coming from the other
segment.

5 Discussions and conclusion

Dislocation dynamics (DD) simulations involve heavy calculations. To account
for hardening and dislocation patterning and avoid small volume artifacts,
DD simulations require several millions of dislocation segments and millions of
steps to reach the strain levels at which the hardening transitions are observed
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Fig. 6. Convergence of the error in force calculations as a function of the distance d
separating the two interacting segments of fixed length L = 100 for two anisotropic
ratio. The error in force calculations remains stationary with increasing relative
distance between the two dislocation segments.

in isotropic elasticity i.e. 1−2 percent of strain [15]. At each step, dislocations
segment-segment interactions are computed analytically when the segments
are close to each other and using the fast multipole method when they are far
away [10]. The interaction force between two segments or the stress between
a point and a segment calculations are the most repeated and expensive parts
of a DD simulation.

The interaction force between two dislocation segments in anisotropic elastic-
ity has been computed using either the Brown or the Willis-Steeds formalisms
in previous works [5, 9]. Using these methods, the stress is integrated nu-
merically at Gauss quadrature points on the dislocation segments and then
summed up to get the force at the end nodes of the two segments. This method
performs better when the two segments are far apart. As the segments get close
to each other, more integration points are necessary to retain the accuracy of
the force. Numerically integrating over segments has been found to be expen-
sive in DD simulations. Rhee et al. [5] report that this method is 500 times
more expensive than the equivalent calculation in isotropic elasticity. Yin et
al. [9] have been able to reduce the cost and reported a cost of 220 for using
anisotropic elasticity versus isotropic elasticity for tungsten. The variability of
the costs reported is not surprising given that Arsenlis et al. [10] showed that
the cost of numerical integration could vary by orders of magnitude depending
on the separation of the line segments in isotropic elasticity.

Using an expansion in spherical harmonics series for the Green’s function
allows for analytical integration over a segment for the stress at a point and
over two segments for the force. The accuracy of this decomposition does
not depend on how many integration points are chosen to evaluate integrals
but rather on the order of truncation in the spherical harmonics series which
can be chosen to specify a predetermined accuracy for a given level of elastic
anisotropy. Analytical integration overcomes deterioration of accuracy of the

14



calculations as the segments get closer.

In isotropic elasticity, an analytical expression to compute the forces between
interacting pairs of segments is given in Arsenlis et al. [10]. A calculation of
the number of operations between analytically computing forces in isotropic,
as defined in [10], and anisotropic elasticity using spherical harmonics series
shows that there are about 850 multiplications, 600 additions and subtractions
and about 60 other operations like logs, square roots, divisions and arc tan-
gents for isotropic elasticity versus about 2450 multiplications, 1300 additions
and subtractions and 40 other operations in anisotropic elasticity for qmax = 1.
Since cost comparisons between two different codes can vary significantly with
different compilers, if we were to estimate a cost similar to the previously re-
ported in the literature, for our new method, we could amplify the relative
cost reported in Fig. (4)[a] by a factor 1.5 − 3.

As explained in Arsenlis et al. [10], the cost of computing interaction forces
is balanced out between near and far field interactions in a DD simulation. A
typical DD simulation domain is decomposed in cells. For two cells in the sim-
ulation domain, the interaction force between dislocations within those cells
is computed either by using direct calculation of the forces or using the fast
multipole method. The distance between two cells determines which method
is used. Local interactions scale as O(n2) and far away interactions scale as
O(N) where N is total number of segments in the simulation and n is the
number of segments per cell. An optimal choice of the number of cells and the
ratio of n/N can be computed to decrease the cost of local anisotropic calcu-
lations. Assuming that the cost of the fast multipole method is comparable
between isotropic and anisotropic elasticity, then the total cost of the calcu-
lation would increase by the square root of the cost factors discussed because
the fraction of near field to far field would be rebalanced to optimize the total
force calculation.

The convergence of the error in the force calculations decreases linearly with
the expansion order qmax in the spherical harmonics series. As qmax increases,
the terms in the coefficients Qm

l (k) grow quickly. When using double precision
to store numbers, a lack of precision in the calculations starts to appear for
qmax > 21 − 25. This instability is due to the explicit description of the asso-
ciated Legendre polynomials into a product of S and H . Nevertheless, in our
simulations, qmax = 21 corresponds to an accuracy in force calculations that
does not exceed 10−4. Fig. (7) shows the error in force calculation when qmax is
fixed to 21. In practice, qmax may not go beyond 10 or so. One way to improve
the limitation in the expansion order in the spherical harmonics would be to
increase the rate of convergence of the error. For instance, polynomials other
than Legendre may converge faster with increasing expansion order.
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A Appendix

The following sections describe how to determine the double line integral in-
volved in the computation of the force in the case of two collinear, parallel
and non-parallel dislocation segments. The single integral for computing the
stress at a point coming from a dislocation segment is determined in the case
where the point is collinear to the segment or not.

A.1 Recurrence relations for two non-parallel segments

The interaction force, Eq. (13) between two non-parallel, non-intersecting and
non-collinear dislocation segments [x3, x4] and [x1, x2] with line directions t

and t′ and lengths L and L′ respectively is

F 4
i ≈ ǫijoǫngrCjsvgCpdwnbsb

′
wtot

′
r

qmax
∑

q=0

2q+1
∑

m=0

ℜ

(

Sqm
vpd

L
[Hs

m,(2q+1−m),2q+3 − s3Hm,(2q+1−m),2q+3]

)

when it is expressed using the double line integral

Hs
ijk =

∫ s2

s1

∫ r2

r1

(R · e12)
i(R · e3)

j

Rk
sdsdr

Hijk =
∫ s2

s1

∫ r2

r1

(R · e12)
i(R · e3)

j

Rk
dsdr (A.1)

where i+ j = k − 2 and k is odd.

If the force is evaluated on the end nodes x1 or x2 instead of x4, the double
integral

Hr
ijk =

∫ s2

s1

∫ r2

r1

(R · e12)
i(R · e3)

j

Rk
rdsdr
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is used instead of Hs.

R is the distance between the two dislocation segments and R is the norm of
R. It can be defined as R = st + rt′ + du where

s =
R · t − cR · t′

1 − c2
r =

R · t′ − cR · t

1 − c2

u = t × t′ d =
(x3 − x1) · u

u · u
c = t · t′

Variables s and r vary in the intervals [s3, s4] and [r1, r2] respectively where

r1 =
(x3 − x1) · v

′

u · u
s3 =

(x3 − x1) · v

u · u

where we have posed v = t′ − ct and v′ = t − ct′.

Finally, we define α, β, γ, δ, ǫ and θ as follows

R · e12 = s t · e12 + r t′ · e12 + du · e12

def
= sα + rβ + γ

R · e3 = s t · e3 + r t′ · e3 + du · e3

def
= sδ + rǫ+ θ

and we pose Kijk = (R·e12)i(R·e3)j

Rk .

A.1.1 Calculations of single integrals Js and Jr

The single integrals

Js
ijk =

∫

Kijkds

Jr
ijk =

∫

Kijkdr (A.2)

can be computed via recurrence.

The initial terms of Jr to start the recurrence are Jr
(−1)jk = Jr

i(−1)k = 0 and

Jr
001 = ln(R + R · t′)

Jr
101 =βR+ ((α− cβ)s+ γ)Jr

001 (A.3)

Jr
011 = ǫR + ((δ − cǫ)s + θ)Jr

001.

The higher order terms are
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Jr
ij(k+2) =

1

k(1 − c2)(d2 + s2)

[

(k − i− j − 1)Jr
ijk + (R · t′)Kijk+

i((α− cβ)s+ γ)Jr
(i−1)jk + j((δ − cǫ)s + θ)Jr

i(j−1)k

]

(A.4)

Jr
i(j+1)(k+2) =

ǫ

k

[

iβJr
(i−1)jk + jǫJr

i(j−1)k −Kijk

]

+ ((δ − cǫ)r + θ)Jr
ij(k+2)

Jr
(i+1)j(k+2) =

β

k

[

jǫJr
i(j−1)k + iβJr

(i−1)jk −Kijk

]

+ ((α− cβ)s+ γ)Jr
ij(k+2)

The line integral Js is defined by similar recurrence relations. They are de-
duced from the definition of Eqs. (A.3-A.4) by replacing r by s, δ by α, ǫ by
β, θ by γ and t′ by t.

A.1.2 Recurrence for Hs, Hr and H

The double integrals Hs, Hr and H can also be defined using recurrence rela-
tions that are functions of the recurrence relations for the single line integrals
Js and Jr.

Initial terms to start the recurrence are H(−1)jk = Hi(−1)k = Hs
(−1)jk =

Hs
i(−1)k = Hr

(−1)jk = Hr
i(−1)k = 0 and

H003 = −
2

|R · u|
tan−1

(

(1 + c)R + R · (t + t′)

|R · u|

)

If we define

I203 = rJs
001 +

cR− d2(1 − c2)H003

1 − c2

I023 = sJr
001 +

cR− d2(1 − c2)H003

1 − c2

I113 = −
R − cd2(1 − c2)H003

1 − c2

then low order terms for Hs and Hr are

Hs
103 = αI203 + βI113 + γHs

003

Hs
013 = δI203 + ǫI113 + θHs

003

Hr
103 = αI113 + βI023 + γHr

003 (A.5)

Hr
013 = δI113 + ǫI023 + θHr

003. (A.6)
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Higher order terms are

Hs
ij(k+2) =

1

k(1 − c2)

[

i(α− cβ)H(i−1)jk + j(δ − cǫ)Hi(j−1)k − Jr
ijk + cJs

ijk

]

Hr
ij(k+2) =

1

k(1 − c2)

[

i(β − cα)H(i−1)jk + j(ǫ− cδ)Hi(j−1)k − Js
ijk + cJr

ijk

]

Hij(k+2) =
1

k(1 − c2)d2

[

sJr
ijk + rJs

ijk + iγH(i−1)jk + jθHi(j−1)k − (2 + i+ j − k)Hijk

]

H(i+1)jk = αHs
ijk + βHr

ijk + γHijk (A.7)

Hi(j+1)k = δHs
ijk + ǫHr

ijk + θHijk

When the dislocation segments are parallel, c = 1. The recurrence relations
Js and Jr, Eqs. (A.3-A.4), remain valid but the ones defining H , Hs and Hr,
Eqs. (A.6-A.7) are not well defined anymore. Recurrences specific to parallel
segments are given in the next section.

A.2 Recurrence relations for two parallel segments

When two dislocation segments are parallel but not collinear and assuming
without loss of generality that their line direction is t, their distance is R =
(s+ r)t + du where now

u = R − (R · t)t d =
R · u

u · u
.

We pose α = t · e12, γ = du · e12, δ = t · e3 and θ = du · e3.

The initial terms to start the recurrence are

H003 =
R

d2(1 − c2)

Hs
003 = −

1

2

[

Js
001 +

(s− r)

d2(1 − c2)
R

]

Hr
003 = −

1

2

[

Js
001 +

(r − s)

d2(1 − c2)
R

]

and also

I203 = rJs
001 − R

I023 = sJr
001 − R
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Low order terms for Hs and Hr are

Hs
103 = αI203 + γHs

003

Hs
013 = δI203 + θHs

003

Hr
103 = αI023 + γHr

003

Hr
013 = δI023 + θHr

003

The higher order terms are

Hs
ij(k+2) =

1

kd2(1 − c2)

[

(k − i− j − 2)Hs
ijk −Hr

ijk + iγHs
(i−1)jk + jθHs

i(j−1)k+

s

k − 2

(

iαJs
(i−1)j(k−2) + jδJs

i(j−1)(k−2) − k(R · t)Kijk

)

]

Hr
ij(k+2) =

1

kd2(1 − c2)

[

(k − i− j − 2)Hr
ijk −Hs

ijk + iγHr
(i−1)jk + jθHr

i(j−1)k+

r

k − 2

(

iαJs
(i−1)j(k−2) + jδJs

i(j−1)(k−2) − k(R · t)Kijk

)

]

Hs
i(j+1)(k+2) =

δ

k

[

Hijk + jδHs
i(j−1)k + iαHs

(i−1)jk − sJs
ijk

]

+ θHs
ij(k+2)

Hs
(i+1)j(k+2) =

α

k

[

Hijk + jδHs
i(j−1)k + iαHs

(i−1)jk − sJs
ijk

]

+ γHs
ij(k+2)

Hr
i(j+1)(k+2) =

δ

k

[

Hijk + jδHr
i(j−1)k + iαHr

(i−1)jk − rJs
ijk

]

+ θHr
ij(k+2)

Hr
(i+1)j(k+2) =

α

k

[

Hijk + jδHr
i(j−1)k + iαHr

(i−1)jk − rJs
ijk

]

+ γHr
ij(k+2)

H(i+1)jk =α(Hs
ijk +Hr

ijk) + γHijk

Hi(j+1)k = δ(Hs
ijk +Hr

ijk) + θHijk

Hij(k+2) =
1

kd2(1 − c2)

[

(R · t)Js
ijk + iγH(i−1)jk + jθHi(j−1)k − (2 + i+ j − k)Hijk

]

A.3 Special case of collinear segments

When two dislocation segments are collinear and do not intersect, the distance
between them reduces to R = (r + s)t and the integrals H , Hs and Hr can
be computed explicitly. There are given for i+ j = k − 2 by

H = (t · e12)
i(t · e3)

j
∫ ∫

(r + s)k

|r + s|k+2
dsdr = −αiδj (r + s)k−1

|r + s|k

Hs = (t · e12)
i(t · e3)

j
∫ ∫

(r + s)k

|r + s|k+2
sdsdr = −αiδjr

(r + s)k

|r + s|k
ln(r + s).
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A.4 Recurrence relations for the stress at a point

The stress at a point x coming from a segment [x1, x2] that does not contain
x, Eq. (12) is

σjs ≈ ǫngrCjsvgCpdwnb
′
wt

′
r

qmax
∑

q=0

2q+1
∑

m=0

ℜ
(

Sqm
vpdJ

r
m,(2q+1−m),2q+3

)

where Jr is defined in Eq. (A.2) and expressed using recurrence relations in
Eqs. (A.3-A.4). The distance between x and the segment is R = rt′ +du with
u = R − (R · t′)t′ and d = R·u

u·u
.

In the collinear case, where R = rt′ and x does not intersect the dislocation
segment [x1, x2], the single integral Jr can be computed explicitly and is given
for i+ j = k − 2 by

Jr = (t′ · e12)
i(t′ · e3)

j
∫

rk

|r|k+2
dr = −βiǫj

rk−1

|r|k
.
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